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ABSTRACT

One of the main problems 1in a multistage decision tree
procedure is predicting the optimal features to be used at
every node. An algorithm is proposed which predicts the
optimal features at every node in a binary tree procedure.
The algorithm estimates the probability of error by approxi-
mating the area under the 1likelihood ratio function for two
classes, and taking into account the number of training sam-
ples used 1in estimating each of these two classes. Some
results on feature selection techniques, particularly in the
presence of a very limited set of training samples are pre-
sented. Results comparing probabilities of error predicted
by the proposed algorithm as a function of dimensionality as
compared to experimental observations are shown for aircraft
and Landsat data. Results are obtained for both real and
simulated data. Finally, two binary tree examples which use
the algorithm are presented to illustrate the usefulness of

the procedure.






CHAPTER 1

INTRODUCTION

1.1 Multistage Classification

A number of different types of classifiers are now in
routine use in remote sensing. Most of these classification
algorithms, using pattern recognition techniques, can be
regarded as "single-stage" classifiers, where an "unknown"
pattern is tested against all classes using one feature sub-
set, and then the pattern is assigned to one of the present
classes in a single-stage decision procedure. An example of

such a procedure is shown in Figure 1.1.

In recent years, as classification of multispectral
data has found a larger number of users and a wider range of
applications, the need has been felt for alternate, more
powerful techniques than the conventional classifiers,
through the use of which more information could be extracted
more accurately and/or efficiently from the scene. Some of

the reasons that have warranted this need include:

1% The need to extract more detailed information from

data. The opportunity ¢to do so results from the
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emergence of more complex data sets. The growing
use of multitype data bases containing Landsat data
with a variety of other quantitative geodata
together with the anticipated launching of more
sophisticated sensors such as the Thematic Mapper
result in the opportunity to extract considerably

more information from the data.

The broadening of the range of applications. As
pattern recognition methods have developed, they
have found a larger number of users with a wider
range of applications. The feedback from these
different and versatile uses has indicated problems

and needs not initially present.

The ever present need for improved classification
accuracy. There are some applications for which
conventional classifiers have proved to be marginal
at best. Some of these are listed in Swain et al.
(1) and include multi-image analysis and the use of

mixed feature types.

The need for improved processing efficiency. The
conventional, single-stage, <classifiers use only
one particular feature subset and are somewhat
inefficient, as they must compare an unknown pat-
tern against all possible classes before assigning

that pattern to a particular class.



Because of these and other factors, there has been some
research in recent years directed towards developing multis-
tage classifiers, whereby the decision procedures go through
several stages before finally assigning a pattern to a
class. An example of such a procedure is shown in Figure

i

The purpose of this research 1is to develop a layered
decision algorithm that can increase the accuracy and effi-
ciency over the conventional single-stage <classification
approach. Developing such an algorithm requires, among
other things, a careful look at some parameters that are
crucial to any successful attempt at tackling such a complex
problem. In particular, three areas have to be investi-

gated:

1. The development of an adequate training procedure
to define an initial set of spectral classes with

their respective statistics;

2. The investigation of various error estimators and
the development of an adequate performance estima-
tor that can reasonably predict the accuracy or any

trends in performance;

3. The development of an algorithm to build a binary

tree making use of the above-mentioned methods.
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Figure 1.2 An Example of a "Multi-Stage" Algorithm
In Classifying Multispectral Data.



Of these three areas, the most important problem is
believed to be the development of an accurate error estima-
tor, especially in the presence of what has come to be known
as the Hughes phenomenon (elaborated upon later in the
review of literature). Predicting the conditions under
which the Hughes phenomenon occurs provides the key to the
solution of the problem. Therefore, a considerable portion
of the research has been directed towards trying to under-

stand and predict the impact of this phenomenon.

1.2 Review of Literature
1.2.1 Training Procedure

Several training methods have been suggested in the
literature. We will not attempt to 1list all of them, but
rather will give a background of some of the methods

reviewed and used in this work.

The training process is the procedure whereby labeled
samples are selected and used to compute class statistics

which in turn are used to classify wunlabeled (i.e., "unk-

nown") samples.

Several parameter estimation methods (training methods)
have appeared in the literature. Sample-partitioning meth-
ods, the leaving-one-out method, clustering are but a few.

See, for example, Fukunaga (2) and Duda and Hart (3).



For remote sensing purposes, clustering has been widely

used in developing training Sitia tels Eale s Two basic
approaches have been: a supervised clustering approach, in
which the analyst selects areas of known cover types , each

set of areas belonging to one cover type is clustered sepa-
rately, and then the statistics for these areas are then
obtained with the aid of a computer; and the non-supervised
clustering approach, in which the entire training area is
subdivided into clusters by the <clustering algorithm and
each cluster is then identified by the analyst and given a
specific label. The statistics of each cluster correspond-
ing to a cover type or a subclass of a cover type are then

calculated. Fleming et al. (4,5) investigated several clus-

tering approaches and their effect on classification accu-

racy. Among the approaches they used were non-supervised
clustering, supervised clustering, modified clustering,
mono- (aggregate) cluster blocks, and multi- (class-condi-

tional) cluster blocks.

l2bere Performance Estimators

A key factor in the design of a layered decision algor-
ithm is the ability to predict how the algorithm will per-
form in terms of accuracy at every node. While optimizing
the performance at every node does not necessarily produce a
.globally optimal tree, it is still a very important and use-

ful step in the design.



Several performance (or error) estimators have appeared
in the 1literature. Again, we will not attempt here to
exhaustively list all the contributions made, but rather
will give an idea of how the research in this area has pro-

gressed.

Performance estimators can be divided into two main

categories:

Performance functions which have some sort f direct

relationship with the probability of error. Examples are

Parzen estimators (see (2)), the k-nearest neighbor error
estimator (see (6)). More recently, Mobasseri et al. (7)
published an error estimator that computes the minimum prob-
ability of error through use of a combined analytical and
numerical integration over a sequence of simplifying trans-
formations of the feature space. The results have been
shown to be similar to those obtained by conventional tech-
niques. However, the algorithm becomes computationally too
inefficient to use as the number of classes and/or features
increases. Moore, Whitsitt and Landgrebe (8) (see also
Whitsitt and Landgrebe (9)) developed a stratified posterior
estimator which, 1like Mobasseri's, depends oniy on a given
set of statistics. This was later used by Wiersma (10) and
both estimators (Mobasseri's and Whitsitt's) were compared
in (11) and found to give similar results, with Whitsitt's

algorithm being faster in some cases. The former procedure



uses a "deterministic" grid to sample the feature space,
while the latter uses an internally generated random data
base and assigns the feature vector to the appropriate class
via the maximum a posteriori principle. Both procedures

assume normal class conditional statistics.

Separability measures, most of which have only a sub-

tle, indirect, and often unknown, relationship to the proba-

bility of error. Various separability measures have been in

common use in remote sensing applications. Among these are:
Divergence (12), Transformed Divergence (13), Jeffreys-Ma-
tusita distance (14,15), Bhattacharyya distance (16) and the

Mahalanobis distance (17). (See list in (24).)

Several works have been reported comparing different
separability measures and their effects on performance. (See

(9,13,18,19,62).)

There are two problems with most of the above separa-
bility measures applied to remote sensing applications: (1)
ambiguity and (2) linearity in pairwise error. The term
ambiguity implies here that there does not exist a one-to-
one relationship between the value of the measure and the
probability of error. Linearity means that equal incremen-
tal changes in the measure imply equal changes in the proba-
bility of error, over the whole range. Whitsitt (9) devel-
oped a distance measure D = erf (/2B) where B is the

erf

Bhattacharyya distance and erf(-) is the gaussian error
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function. He found that the resulting measure is less ambi-

guous and more linear than the measure B.

Another key factor in the process of error estimation
is the choice of feature subsets. The problems here are

twofold:

1. As the number of features becomes large, it becomes
desirable to choose a subset of these features that
can adequately predict the accuracy. This selec-
tion process also can become expensive if one must
search through all possible combinations of the
feature set. It is desirable, therefore, to have a
priori knowledge of the importance of each feature
in relation to the probability of error. The
Karhunen-Loeve expansion (attributed to Karhunen
(20), and Loeve (21)) in pattern recognition liter-
ature has historically been used as a feature
selection technique. It has the advantage of pro-
ducing uncorrelated features (in theory, but the
features are actually approximately uncorrelated in
a practical K-L transformation). In addition, it
imposes an ordering on the features 1in terms of
importance in a representation error sense. As a
result, first feature is "likely" to be more impor-
tant than the second in calculating the probability

of error, and so on. More recently, O0ja and
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Karhunen (22,23) published two papers on the con-
struction of K-L expansions for pattern recognition
purposes that do not require the computation of any

covariance matrices.

The probability of error is not necessarily mono-
tonically decreasing as the number of features
increases. This is due to a peculiar phenomenon
that has come to be known as the Hughes phenome-
non. Hughes (25) found that with a fixed and
finite training pattern sample, recognition accu-
racy can first increase as the number of measure-
ments on a pattern increases, but decay with mea-
surement complexity higher than some optimum value.
He also reported that for unlimited training data,
this does not occur and the recognition accuracy
reaches an optimum only at infinite measurement
dimensionality. According to Hughes, if insuffi-
cient sample data are available to estimate the
pattern probabilities accurately, then a Bayes
recognizer is not necessarily optimal. Many papers
have since been published on this phenomenon, con-
firming it or trying to explain why it occurs (see
(26-42)). Thus, it appears that a successful
design should predict when and if such phenomena

occur.
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1.2.3 Multistage Classifiers

In recent years, some work has appeared in the litera-
ture aimed at developing multistage classification algor-
ithms. There is much yet to be learned about such algor-
ithms, and no work has been reported claiming optimality (or

even close to optimality) of results.

In general, earlier work can be grouped into two main

categories:

Sequential classification methods. These can be found

in several papers and books (see, for example, (43-45)).
Basically, the method consists of observations made on fea-
ture measurements, one at a time. After an observation is
made, the classifier either reaches a final decision and the
process is terminated, or it makes another observation until

a final decision is reached.

Hierarchical classification methods. These are subdi-

vided into two categories:

1. Hierarchical clustering methods. Examples of such
work are found in Fukunaga (2), Dubes and Jain (46), who
present a semi-tutorial review of the state of the art in
cluster validity, and Lukasova (47). 1In general, hierarchi-
cal clustering is designed to generate a <classification
tree. The "root"™ node of the tree represents a collection

of samples (either a training data set or the entire sample
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set) and each terminal node represents either an individual
sample or a group of samples belonging to some class within
the set of classes in the data set. The method attempts to
divide the set of samples in each node into disjoint subsets
which form new nodes. Defined as such, the method is often
nonparametric and depends heavily on the ability of the
algorithm to find meaningful divisions of samples that cor-

respond at terminal nodes with meaningful classes.

20 Decision trees and criterion functions. Most of

the work done in multistage algorithms belongs to this cate-

gory. Often, a decision tree 1S Sb ST using an
optimization or criterion function that dictates the
structure of the tree. It is this kind of approach that

will be of greatest concern in this research.

Hierarchical methods differ from sequential methods in
certain important respects. While in sequential schemes any
class can be accepted at any stage of the measurement pro-
cess, 1in hierarchical schemes certain classes are excluded
from consideration at each stage. Also, sequential methods
impose a linear ordering on the features. In hierarchical
methods, features used along one decision path can be diffe-

rent from those used along another path.

In 1971, Nadler (48) tried to calculate error rates in
a hierarchical decision structure under assumptions of sta-

tistical independence among the members of the hierarchy.
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Even wunder such assumptions, the results assume "small"

probabilities of errors at any level.

Several heuristic methods of constructing tree designs
have been proposed in the 1literature. Some studies were
done using optimization methods to automate the classifier
design procedure, but the assumptions made were often too
restrictive. Meisel and Michalopoulos (49) in 1973 pre-
sented a two-stage partitioning algorithm for the design of
an optimal binary tree. In the first stage, a suboptimal
sufficient partition is obtained. The second stage optim-
izes the result of the first stage through a dynamic pro-
gramming approach. The method allows only for linear dis-
criminant functions to partition the space, certainly a

suboptimal and too restrictive condition.

In 1974, Wu et al. (50) reported on a decision tree
approach with direct application to multispectral data ana-
lysis. Several design procedures were proposed (one of
which is manual), with special emphasis on a heuristic,
machine-implemented approach. The optimality criterion used
is a weighted sum of computation cost and accuracy. Results
were presented which showed superiority in efficiency (but
infrequently in accuracy) over the conventional classifier.
The criterion function used, as it cannot predict beforehand
the structure of the tree below that node, assumes all the

nodes below the node under consideration are terminal nodes,
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and hence is necessarily suboptimal. Later papers have
appeared that have pointed to applications using this parti-

cular classifier (51,52).

In 1976, You and Fu (53) presented a linear binary tree
classifier that uses linear discriminant functions at deci-
sion stages with an application to multispectral remotely
sensed data. The procedure includes a grouping algorithm, a
separability measure, and an error minimization procedure
using the Fletcher-Powell algorithm (54). Again, the proce-~
dure is certainly suboptimal because of the assumption of
linearity. Results reported, though, show that this classi-
fier is much faster and more accurate than the maximum like-
lihood classifier with the same number of features. This is
due to the fact that the procedure uses different feature
subsets (with a restriction on their number) at each node,
compared with only one feature subset used in the one-stage

maximum likelihood classifier.

Kulkarni and Kanal (55) used dynamic programming and
branch-and-bound methodologies in the design of hierarchical
classifiers. The criterion of optimality they used is a
weighted sum of the probability of error and the average
measurement cost incurred in classifying a random sample.
The design assumes that the features used at the nodes are
statistically independent and that the decision at each node

is a function of only that particular feature observation,



16

the design wusing only one best feature at each tree node.
Further, the design of the optimal tree assumes a very low
error rate for the tree, a very restrictive assumption since

in many cases a high error rate is specifically the reason

why a layered classifier was selected, i.e., to improve the
accuracy. Although the authors presented some methods to
reduce the complexity of their design algorithms, the exam-

ples they wused involve only a small number of classes and

features.

In 1977, Parkih (56) compared several classification
techniques of clouds, including hierarchical design. How-
ever, his paper offers no new insights or major results that

would help improve the state of the art.

Also in 1977, Sethi and Chatterjee (57) developed an
algorithm for the design of an efficient decision tree with
application to pattern recognition problems involving dis-
crete variables. A criterion function was defined to esti-
mate the minimum expected cost of a tree in terms of the
weights of its terminal nodes and costs of the measurements,
which then was used to establish the search procedure for
the efficient decision tree. The concept of prime events
was used to obtain the number of nodes and the corresponding
weights in the design sample. No optimality claim was made,
but the procedure was found to lead to the optimal tree in

most of the cases. The procedure uses only one feature at
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every node, and its applicability to remotely sensed multis-

pectral data is very doubtful.

In 1978, Breiman (58) presented a procedure for build-
ing a binary classification tree. He used a criterion func-
tion that is only a function of the parent node and the two
descendent nodes. He used one best feature at every node.
He also reported on another regression algorithm developed
at Survey Research Center, University of Michigan (59), in
which the criterion function tries to reduce the variances
of the two descendent nodes as much as possible from the

variance of the parent node.

Rounds (60) in 1979 developed a binary decision tree
algorithm, but again one feature is selected at every node.
The approach is a nonparametric one, based on the Kolmogo-

rov-Smirnov criterion.

Dattatreya and Sarma (61) in 1981 presented a multis-
tage binary tree "minimum-cost"™ <classifier, when general
cost functions are associated with the tasks of feature mea-
surements. The optimization of the binary tree is carried
out using dynamic programming. However, one feature is only

selected at every node.

In summary, most of the work done with multistage clas-
sifiers often imposed too restrictive assumptions or condi-

tions, such as using one feature only at each node, or hav-
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ing a 1linear discriminant function. Moreover, very few
results have been reported on situations where the Hughes
phenomenon occurs, namely, working with a limited set of

training samples.

The major contributions of this research are then:

1. The development of some theroretical results that
clearly show the dependence of the accuracy of the
estimated statisties of the classes under considera-
tion on the number of training samples used to esti-
mate the statistics of those <classes, as well as on

the number of features used.

2. The development of an error estimator which is par-
ticularly useful when the number of training samples
is limited, and which is suited for a binary tree
classification procedure. This estimator, which
allows the selection of a "near optimal"™ feature sub-
set at every node, has no restrictions on the number

of features that can be used at any node.

3. The incorporation of the above error estimator in a
binary tree procedure, showing the usefulness of such
a procedure in predicting the optimal features that
lead to the best accuracy that can be attained given

a fixed set of training samples.
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1.3 Summary of Contents

In chapter 2, some parameter considerations for a mul-

tistage binary tree classifier are addressed in detail. The

Hughes phenomenon is elaborated upon, and a technique known
as "sumultaneous diagonalization" is introduced. Feature
selection techniques are also treated. A data simulation

algorithm that is repeatedly used in the research 1is also

treated.

In chapter 3, an approximation algorithm to the proba-
bility of error is proposed that takes into account the

Hughes phenomenon.

Chapter U4 presents experimental results on real and

simulated data.

Finally, chapter 5 summarizes conclusions about the
sibudy’s Some analytical details, together with computer

listings and training data are placed in appendices.
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CHAPTER 2
PARAMETER CONSIDERATIONS
FOR

A MULTISTAGE BINARY TREE CLASSIFIER

2.1 The Hughes Phenomenon

One of the major needs for a decision tree classifier
originates from a dimensionality problem often referred to
as the Hughes Phenomenon (25). A considerable portion of
this research is directed towards understanding the Hughes
phenomenon. Figure 2.1 illustrates the phenomenon concep-
tually. In the presence of a limited training sample size,
the mean recognition accuracy as a function of the measure-
ment complexity (number of features for our purposes) exhi-
bits a peaking effect. Contrary to intuition, the mean
accuracy does not always increase with additional measure-
ments. Further, peaking of the curve shifts up and to the
right as the number of samples increases, disappearing in
the case of an infinite number of training samples (complete

knowledge of the underlying distributions).

Figure 2.2 suggests a concept for one possible explana-

tion of this phenomenon. Figure 2.2a shows a hypothetical
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graph of class separability plotted vs. dimensionality. As
dimensionality increases, so does class separability (a non-
decreasing function of dimensionality) until it saturates,

and any further increase in dimensionality does not have a

significant effect on class separability. But this is not
the only effect on the mean accuracy. With the presence of
a fixed, limited training sample size, any increase 1in

dimensionality necessarily results on the average in a deg-

radation in the accuracy of statistics estimation of the

elass distributions. Thus, conceptually, one should expect
a curve similar to that of Figure 2.2b.. Further, as the
number of samples increases, the curve should shift to the

right, i.e., for any given dimensionality, the larger sample
size should provide a better estimate of the true distribu-
tiense Assuming these two effects are the dominant effects
on accuracy, adding the two effects results in Figure 2.2c,
a curve similar to Figure 2.1. Based upon this concept of
the phenomenon, the solution to the problem 1lies in being
able to predict quantitatively how the number of samples
present affects the accuracy of the estimated statistics .
Especially in remote sensing applications of pattern recog-
nition methods, training samples are limited as ground truth
is often not present or difficult to get. Thus, the impor-
tance of the Hughes phenomenon becomes evident, as well as

the validity of this conceptual explanation of it.
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The Hughes phenomenon was studied by many researchers.
(See (26-42)). Hughes (25), who was one of the earliest to
introduce it and treat it in some detail, tried to explain
it from a nonparametric point of view. The explanation
given by Wacker and Landgrebe (62) is of another nonparame-
tric case, where the Euclidean distance measure is used for

discrimination among classes.

Several researchers (28-34) tried to study the effect
of limited training sample size and independence of measure-

ments on the recognition accuracy.

In 1979, Trunk (38) provided a simple example in which
he showed theoretically that the probability of error
approaches zero as the dimensionality increases and all the
parameters are known 1in a two-class problem, but it
approaches one-half as the dimensionality increases and the

parameters are estimated.

In remote sensing applications, where maximum likeli-
hood classifiers are frequently used, and where the assump-
tion of class-conditional multivariate normally distributed
data is invoked, not much work concerning the dimensionality
problem has been reported yet. Wacker and E1-Sheikh (40-42)
presented some papers dealing with dimensionality problems
for two-class Gaussian problems. Their results again show a

Hughes phenomenon occuring with finite training data.



25

It then follows that any error estimator in a multis-
tage classification algorithm that can claim some optimality
in results from an accuracy point of view, should be able to
predict when/if a peaking occurs in the curve mentioned ear-
lier. It is this key problem that this research is attempt-
ing to solve, i.e. the development of an error estimator

that can accurately predict the Hughes phenomenon.

Working with multispectral data, one almost always has
to work with multiple feature measurements and multiple
classes. In this research, we propose a binary tree multis-
tage classifier. This means that any node in the tree is
either a terminal node or is further subdivided into two

nodes (with statistiecs corresponding to two classes).

The advantages of a binary tree procedure are the fol-

lowing:

e Working with two classes allows a theoretical
understanding of the problem. Many pattern recog-
nition results that apply to two-class problems
fail to do so in multi-class ones. This is parti-
cularly true in the "simultaneous diagonalization"

technique that will be introduced shortly.

2 Most feature selection algorithms used in pattern

recognition applications generally, and in remote
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sensing applications specifically, are optimal only
when applied to two-class problems. For multi-
class problems, a separability criterion israver-
aged over pairs of classes and thus is optimal only
in an average sense. Working with a binary tree,
then, should provide us with both convenience and

accuracy.

Working with multiple features, several properties are
desired in these features which will make further analysis

easier:

Uncoupled (Independent) Features. Uncoupling of fea-

tures from one another simplifies analysis a great deal as
it permits evaluating the effect of each feature separately

from other features.

Ordered Features. If the features can be ordered, or
at least approximately so, 1in terms of their effect on the
probability of error, then the process of feature selection

would be made easier.

Optimal Separability. The features should be optimal

with respect to the probability of error for two distribu-
tions at hand. Putting it in different words, the feature
subset should be tailored to the separability of the two

distributions.
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To this end, a technique known as a "simultaneous

diagonalization" (63,64) is discussed in the next section.

2.2 Simultaneous Diagonalization: Theory

~ ~

Let Zland 22 be the estimated covariance matrices for
classes 1 and 2, respectively. We seek a transformation

matrix A such that
AZA =1 AZA = A (2.1)
where I is the identity matrix and A is a diagonal matrix.

This transformation would uncouple the features, while
not affecting the probability of error because the latter is
invariant under linear transformations. We proceed to find
such a transformation as follows. (For more details, see

(2), pp. 31-35.)

Let © and ¢ be the eigenvalue and eigenvector matrices

of Zl’ respectively; then

-1 ~ -1 ~

0~ %p T I, ¢ 0 S = 7 (¢T21® = 0) (2.2)
LT - -L _

0 %% I. o 06 * =K K is a general matrix (2.3)
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Next, we desire to diagonalize K. To find eigenvalues

of K, it is necessary to solve the equation

IK - )\Il = 0 (2.4)

Replacing K and I in (2.4) by (2.2) and (2.3), we get

= 0 (2.5)

’5‘ = 0 (2.6)

-1
Since © ZQT is nonsingular, it follows that

_ = 0 (2.7)
I, = AL
or,
N (2.8)
_ -0
By Ly ”[

A1
So, only the eigenvalue and eigenvector matrices of 21 22

need be calculated.
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The eigenvalue matrix is then A , and the transpose of
the eigenvector matrix, AT, serves as the transformation

matrix.

The idea behind simultaneous diagonalization is to
transform the original features into a new space where the
features are independent and then choose a subset of these
features in the new space which is optimal with respect to
the probability of error. This is illustrated in Figure

2.3.

2.3 Feature Selection

Before proceeding to discuss the approximation algor-
ithms to estimate the probability of error, we digress

briefly to discuss how the features are ordered.

The literature offers many studies made on comparing
different separability measures and their effectiveness in
choosing the best feature subset (see (9,13,18,62,65)). It
appears that the Bhattacharyya distance is one of the most
suitable separability measures for distinguishing between
classes. Thus , it will be used as a basis for feature
selection. The fact that the features are independent
allows us to determine the effect of each feature on the

probability of error separately.
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The Bhattacharyya distance for two normal distributions

can be expressed as follows:

5 ( )
B=%(M1M)( )I(MM)+— : 12]

(2.9)

After the simultaneous diagonalization transformation,

however, B can be expressed as:
P 1(dli_d2i 1 1/ 1 5
- = e = = 3 2110
B E 4 Ai+ i 2 tn 2 L ¥y > ( )

where dij is the jth element of the transformed class-condi-

tional mean: Di = A Mi; and Ai is the ith diagonal element
of A.

Thus, it is clear that for every feature i, B can be
calculated separately. The feature with the largest B is

the best feature, the one with the second largest 1is the
second best, and so on. Also, the two best are the best

two, and so on.
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2l Simulation Algorithm

2.4.1 Need For A Simulation Algorithm

For remote sensing data analysis, several assumptions
are commonly made. These assumptions are usually that the
data are class-conditionally distributed multivariate normal
and that the data used to train the classifier are represen-
tative of the area of interest. This second assumption
actually has several parts. The assumption is made that in
the process of training, all classes present in the scene
are found, and all spectral subclasses of each <class are
also represented 1in the training data. Furthermore, the
parameters of the distribution of each subclass are also
assumed to be known from the training data. Each pixel is
assumed to come from one of the training classes, and also

is assumed to be entirely of one cover type.

In actual practice, these assumptions are not met. The
number of spectral classes 1in the area is not known and

clustering or some other method is used to determine the

number of subclasses, 1in addition to estimating the statis-
tics of those subclasses. Some of these methods also lead
to non-normal subclasses. In particular, the clustering

algorithm available through LARSYS truncates the tails of
the subeclass distributions and so leads to non-normal dis-

tributieons.
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There are also questions relating to a single picture
element. A single pixel in Landsat data covers an area
approximately 80 meters by 50 meters. More than one cover
type may be present in this area and result in a "mixture
pixel"™ observation. It is not clear how the distribution of
the spectral response of mixture pixels can be related to

the distribution of the spectral response of "pure pixels".

There has been much speculation in the remote sensing
community as to the effect of the non-satisfaction of the
basic assumptions. Whenever new algorithms are brought
forth, the old question is raised again, indicating that
there is 1insufficient understanding of the interaction of
the real attributes of the data and the theory of the algor-
ithms. At times it 1is not clear whether a particular
result 1is due to aspects of the algorithm or to the extent

the data set deviates from the assumptions.

In testing new algorithms, deviations from the assump-
tions may obscure the action of the new process. One way to
clarify the situation 1is to apply the algorithm first to a

data set satisfying the assumptions.

Such a data set could be obtained artificially, through
simulation. The analyst could then know: how many classes
exist in the data; the true distributions of the classes,
including normality if desired; the observations could

really be independent; and no pixel would be a "mixture
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pixel™. New algorithms could be studied on such a data set
with the knowledge that any "strange" effects are indeed

algorithm rather than data problems.

In many cases where simulated data have been used in
the past, the data were too artificial, in the sense that
all aspects of the image were controlled, removing the
natural variation in object size, position, and relationship
which occur in real data. This limited the use of the simu-

lated data sets in testing new algorithms.

The natural spatial information occuring in multispec-
tral data could be retained in a simulated image by spa-
tially basing the simulation on a classification. It would
be even better to base the simulated data on a digitized
"ground truth" map if the spectral characteristies of the

cover types were known. By basing the simulation on a clas-

sification, the number of classes, their exact distribu-
T ilon'sy, and the class of each pixel in the area are known.
If the classification was sufficiently accurate, then the

spatial information held in the classification map will be
close to the actual cover type map and actual spatial con-
tent of the original data. For each pixel in the area, a
random vector distributed according to the pixel's <class
statistices could be generated. This becomes the simulated

data vector.
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This simulated method was reported in LARS Technical
Report 070980 (66), and the program will be used for testing

the error estimator developed.

2SR Statistical Background

From the classification chosen as a basis for the simu-
lation, the following are known: the number of classes K,
the set of classes (wi ,  di=15cc.K ), the elass distributions
(f(tnﬁ,i=1,...K), their means and covariances ( Mg andZi .
iz1,...K ), the number of channels p, and the class of every

pixel in the scene.
From classical statisties:

C10) S Let Xeipxl,  A:pxp, and bipxil:

If XN (0,I), then Y = AX + bvN (b, AIDAT = aah)

(where I is the identity matrix having dimensionality
p).

(2) Let I be a symmetric, positive definite matrix. Then
there exists A, such that

1
IV (A is denoted f?)

To simulate a pixel which was a member of class i in
the base classification, N(O,Ip) (the random vector for each
pixel is independent of other vectors) is generated. (See

L
Appendix A.) Next Y = E;x + 1, is calculated; it is then a
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random vector from the population N( My ):1_). This process is
repeated for each pixel of the base classification and the
random vectors thus generated are stored appropriétely,
i.e., so as to correspond to their simulated spatial loca-

tion.

The program requires as an input a <classification map
stored on a results tape. The results tape has the class
statistics for p-dimensions also stored on it. The program
then, uses the results map and the stored statistics to gen-
erate a p-dimensional data set, which is stored on a user

specified output tape in LARSYS format.

Appendix A provides a mathematical derivation related
to the generation of normally distributed samples. Appendix
E provides a Fortran program listing for the simulation pro-

gram.

With all the preliminaries discussed, we are now ready

to begin our discussion of the error estimator algorithm.
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CHAPTER 3
PERFORMANCE ESTIMATOR:

APPROXIMATION TO THE PROBABILITY OF ERROR

3.1 The Likelihood Function

As mentioned earlier, our goal is to develop a perfor-
mance estimator that can predict where the peak in the
Hughes curve occurs. Some of the most serious difficulties
facing researchers in trying to estimate the probability of

error in multidimensional analysis are:

1. The need ¢to carry out a multiple integration on
the multivariate probability density function. Most
often, this integration 1is almost impossible to
carry out analytically, and numerical integration

that is often costly has to be perfomed.

2. The measurement features are often correlated,
making it difficult to assess the importance of each

feature separately on the probability of error.

3. In most of the cases, one has to deal with multi-
class problems (greater than 2) which further com-

plicates multivariate probability density functions.
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It would be much easier, therefore, if one could work
with a function that is one-dimensional but carries all the
information present. Fortunately, since we are looking at
two classes at a time in a binary tree procedure, such a
function does exist, and is called the likelihood function

(minus the log of the likelihood ratio). See, for example,

(66) .

The likelihood function, denoted h(X), is given by:

h(X) = =1n p(X/w)) / p(X/u,) (3.1)

where
p(X/wi) is the probability density function of

X given Wy o

In remote sensing applications, the assumption of mul-
tivariate class-conditional normal distributions is almost

always invoked, and will be consistently used in this work.

Using this assumption, p(X/wi) becomes:

p(X/wi) = 1 exp (—‘/z(XT—MiT )Z;1 (X—Mi)) (3.2)

(2m)P/2 I : |’

]
i

where M. is the mean vector of class i.
i
. is the covariance matrix of class i.
1

p is the number of dimensions.
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In practice, Mi and Zi are estimated from training

statistics and are replaced by Mi and Zi.

The Bayes decision rule for minimum error may be writ-

ten as follows:

P(w, /X) 2 P(w,/X) > X e (3.3)

The a posteriori probabilities P(wi/X) may be calcu-
lated from the a priori probabilities P(wi) and the condi-

tional density functions p(X/wi) using Bayes theorem, i.e.

P(wi/X) = p(X/w)) P(wi) / p(X) (3.4)

Since p(X) is common to both sides of the inequality

of (3.3), the decision rule can be expressed as:

W
p(X/w,) P(w,;) < p(X/v,) P(w,) =+ X ! (3.5)
Yo
P(w,) w
2(X) = Py 2 . xe : (3.6)
p(X/w,) P(w,) )

h(X) can then be written as:
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T -1 T -1
h(X) = -1 2(X = L(x- - -L(x- -
(X) n (2(X)) 5 ( M) I (X Ml) 5 (X M2) I, (X Mz)
|2, .
5 - > 1n Pty + X e 4 (3.7)
’32, P(w,)
Y2 Y1
~
In practice, since Mi and Zi are replaced by Mi and

-

Zi, h(X) becomes (after moving 1n P(wl)/P(wz) to the L.H.S.):

- & L 2.3 . AP SN -
h X = 1 N — = - L - -
® = w0 T 3T en) - wxen) T 5 xemy)

- 3 w
+i lnl.iﬂ - P 0 4 xe |2 G

I EJ 1;(“72) v,

The Bayes test for minimum error reduces then to look-
ing at the value of E(X), assigning measurements with posi-
tive values to class 2, and measurements with negative

values to class 1.

Note that ;(X) is a one-dimensional random variable.
The problem then is to know, or estimate, the probability
density function of ;(X). Once that is known, the proba-
bility of error can be obtained by carrying out a scalar
integration. Figure 3.1 shows the probability density

functions for h(X) given either class 1 or 2.
The probability of error can be calculated as:

€ = p(error) = p(error/w;)P(w;) + p(error/w,)P(w,)

(359)
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Let the domain or decision space of X be divided into
regions Fl and Fz. Then, if a sample belongs to LET an

error occurs whenever Xerz. Similarly, if a sample belongs

to w_, an error occurs whenever Xsrl. Thus

g =P (x5r2/w1) P(wl) + P(Xsrl/wz) P(wz) (3.10)

In terms of the probability density functions of

h(X/w_ ), this becomes:
il

e = P(wl) jfp(h/wl) dh + P(wz)J[ p(h/wz) dh

0 0
(3.11)

1 4 e,

The probability of error is then the area under the
two curves in Figure 3.1 multiplied by the prior probabili-
ties. The objective is to develop an algorithm which will
approximate the class-conditional probability of ﬂ(X), and

hence, the probability of error.

F el Performance Estimator

Fukunaga and Krile (6l4) developed an algorithm that
approximates Q(X). This algorithm assumes there are two-
class multivariate normal distributions, and was tested

using one eight-dimensional simulated data set.
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The algorithm, however, assumes the training samples
are enough to reasonably estimate the true statistics of
the distributions, and hence does not take into account the
Hughes phenomenon. Put in other words, in situations where
the training samples are few and do not reflect the true
statistics of the distributions, the algorithm will treat
the statistics obtained from the training samples as a
"perfect" estimation of some "wrong" distributions, when in
fact they are an "imperfect" estimation of the true statis-

tiecs.

It is this algorithm, proposed by Fukunaga and Krile,
that we will use and modify to take into account the Hughes
phenomenon. Therefore, it seems appropriate to explain the
algorithm in detail, and then discuss the modifications

made to it.

3201 The Normal Assumption

~

Looking at equation (3.8), since h(X) is a quadratic
function in general of a normal random variable X, it can-
not itself in general be normally distributed. However, in
the case where le 22, ﬂ(X) becomes a linear function of X

and hence is normally distributed.

In most cases, however, Zl # 22. Fukunaga and Krile

still tried to assume that h(X) is normally distributed.
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An algorithm was developed and tested in this research
under the assumption that ;(X) is normally distributed
(although Zl #22 ) but results showed it to be a very poor
approximation of the probability of error and hence it was

not further analyzed.

3.2.2 The Modified Gamma Distribution Assumption:

Fukunaga and Krile Version

Consider ﬂ(X) as given by equation (3.8). Applying
the simultaneous diagonalization technique described ear-
lier, §l is transformed to the identity matrix I, and £2 is
transformed to a diagonal matrix A . The transformation
matrix is denoted AT, or the transpose of the eigenvector

matrix A.

Without losing generality, we assign the origin of the
coordinate system such that:

~ ~ Ca

ml =0 and m2 = Ml - M2 (3.12)

With Xew h(X) can be written as another function of

1 )
Y, where Y:ATX, as follows:

>

h(Y/u) = YTy —(v-)F A7Y (Y-D) + 1m l—ll
A | %, |
- 2 1n A( )
P(w
X - 2

where D = A mj.
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Since the features are now uncoupled, this can be
written as:
-~ p - 2 ~ P(w)
h(Y/w,) = = (y? - é (y.-d.)” -1n 2,) - 2 1n e
1 . i o Tl i .
i=1 A,
i P(wz)
A ~9 (3.14)
E 1 4, 3= di :
= I ((-=) (y; + = = (= + 1o 1A;))
i=1 AL A,-1 A.-1
- i i
P(wl)
- 2 1n ———
P(wz)
where p is the number of dimensions.
éi is the ith element of vector D.
Now, we have h(Y/wl) in terms of p independent Gaus-
sian random variables Yo each of which has zero mean and

unit variance with respect to class wl.

Defining a new transformed variable Z and a trans-

~

formed difference- of-means vector V as follows:

~_1 ~
z = (A7% AT (%-m) (3.15)
v o= (K Ay m, = 8- %D (3.16)
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h(X/wz) can be expressed as a function of +the new
variable Z and v by substituting (3.15) and (3.16) into

(3.8) as follows:

B o
- = xF - 3t 1 2 1 1
h(z/w,) = (Z+v) p (Z+v) - 2°Z + 1ln = - nh—
2 lZ P(wz)
(3.17)
Again, since the features are uncoupled, we can write
ﬁ(Z/wz) as follows:
P(w,)
- P ~ 9 2 ¢ 1
h(z/w.,) = I (r.(z.,4v,)" - z; - 1n A;) - 2 1n %
2 i=1 it i i i St P(wz)
a1 o~ ~
P . *? 8z i 5
= I ((x,-1) (z.+ < Y —— + 1n X.))
i=1 + o =1 i.~1 *
T i i
1;(w )
- 2 1n = 1 (3.18)
P(wz)

Again, we have an expression in terms of p independent

Gaussian variables z _ , each of which has zero mean and unit
2l

variance.

Next, we define the following quantities for conveni-
ence:
a..=1- 1/x,. (3.19)
1i i
b= d. /(3 ,-1) (3.20)
14 i i
a = &, = 1 (3.21)
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Al/ ~ - _
b,.= 27 a /Oy D (3.22)
1 5 I 1
P . 5w . . (3.23)
C= I (1n A, + d./(x -1 ’
o1 i i ( i ) + 2 1n P(wl)/P(wz)

Substituting equations (3.19)-(3.23) back into equa-

tions (3.14) and (3.18), we get:

- P
R(U/wp) = T (ay Gy o+ b, )0)- ¢ (3.24)

(3.25)

h(z/w,) 21 (%3 21

Referring from now on to Y and Z as &, and to Y and
zZ_ as g,, we find that h(&/wl) and h(é/wz) have the same
il 1

functional form, except for the values of a;;,b;;, ay;, and

b ..
21

Theorem 3.1

TRX = (xl,....,xp) where the x, are a sample from a
Normal(O,oz) population, then the random variable V =
Pa2 2 2 : R
rx7 /0° has a xp, or chi-square, distribution.

: 2
i=1
Proof:

See (67), p. 16.
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Theorem 3.2

If sl,....,s are independent random variables, then
the density of their sum sl+sz+...+sp equals the cohvolu-
tion of their respective densities.

Proof

See (68), p. 189.

Examining equations (3.24) and (3.25), shows that the
density functions of ﬁ(E/wl) and ﬂ(i/wz) can be obtained by
convolving the densities of p non-central (because of the
b and the b2i terms) x2 variables having multiplicative

11
constants ali and aZi’ and adding a shift parameter C.

The density of h(g) is divided into three parts:

pkr 9
= 3.2
Vir 8 e (Bpg ¥ Pyy) for 8., 2 0 (3-20)
a, .,.> 0
ki-—
Pys 2 7
v, = I a, . (E,. + b_.) for a,_ ., < 0 (3.27
ks a % 0 kj kj kj kj
kj
- ~ B g s - (3.28)
C = T 1 + = .
L (1n Ai di/(Ai 1) + 2 1n P(wl)/P(WZ)
= + =
(p Prr T Prg) (k= 1,2}

The density function of Vkr’ pkr(h), is the convolu-

tion of pk densities of squared Gaussian variables having
r

multiplicative constants. All pk densities lie above the
r
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positive h axis with ak%'O. Similarly, the density func-

tion of V (h), is the convolution of p, densities of

ks’ Pks
squared Gaussian variables with multiplicative constants.

All Pre densities lie on the negative h axis with ak; Qi3

A gamma density function is given by:

~1 =N
By n " AP xP7l M yr(p) (3.29)
?

Let k be a positive integer. With p=1/2k, and x =1/2,
the gamma density g(p,A») 1is referred to as the chi-squared

density with k degrees of freedom. (See (67),p.13).
Theorem 3.3

If Xl,....,X are independent random variables with
n
gamma distributions (pl,A),...., (p ,2), then Y:X1+....+Xn
n
has a gamma distribution (p1+...+p e
n

Proof

See (67). p. 15.

Since what we have 1is the summation of chi-squared
random variables (special form of a gamma distribution),
both pkr(h) and pks(-h) (pks(h) reflected to the positive
side) can be reasonably approximated by a general gamma

form, especially for large nkr and n, , as follows:

ks
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hu e—h/B
g(h) = Ho2 0
< Bu+1 IT'(a+l)
(3.30)
0 h <0

The parameters o

mean

n and the

and B can be determined so that the

: 2 . . 7
variance o of the "true " distribution

match those of the approximation.

Next, we calculate the expected values nkr and ﬂks of
i 2 2
Vkr’ and Vks’ and the variances okr and Uks.
P
kr
2 a > 0
= + ki —
Vir 5 ag (Epg ¥ Pyy)
a..> 0
ki-
pkr 2 2
— S .
- < qyi (Ekl - bk B )
a,.> 0
Jed—
. Prr 2
= = 1 +0 + b .)
E(T, ) = mg z ( ki
a. .> 0
ii—
or,
= pkr 2 (h)
- f
Myr z a, s (1 + bki) OT Py . (3.31)
a..> 0
ki-
(Ek, has zero mean and unit variance)
i
Similarly,
= 1 + b, . for 3.32
"ks f g ey Pks (

0
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P
E(Vz)-E( T l;r (g, .+b )2( +b )2
kr) 2ki k3 tkiTPki 357 Pk
a, ., a > 0
ki kj —
P
kr
B 2 2 3 2 2
= E( L oA By ¥ 8 by By +6 by B
a, .> 0
ka —
3 4
+ 4 bki Eki + bki)) + 0

( The zero term comes because gki is independent from

Ekj and hence they are mutually orthogonal as E(Eki) =Y
P
kr
- 2 - & (3.33)
. aki (3 + 6 bki + bk )
ki= 0
where E(Ezl) 1.3 e o(n-1) for n even
0 for n odd
P
Ez(v)= zkr a2(1+b2)+0
kr A ki ki
ki— 0
P
kr
= o) a2.(1+ 2b2. +bl‘.) (3.34)
ki ki i
a .> 0
ki-
Yar (Vo ) =6 = BLV- ) = E= (V. )
kr kr kr kr
P
kr
_ 2 2 (3:535)
9, ) f . aki(l + 2 bki) for pkr(h) ,
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Similarly,

pks
S 2 2 £ 3.36
O = 2 I akj(l + 2 bkj) or pks(h) (3.36)
aij 0

For a random variable h, which has a gamma distribu-

tion with parameters o and B, (See equation (3.30) ), then

E(h) = (ot 1)8 Yar (B) = Lot 136" (3.37)

(See (67), p. 44)

Therefore, O aks’ Bkr’ Bks’ can be calculated as:
L, 2 =2 .
o -(nkr / Ot r ) -1 (5.38)
a2 =
“ks _(nks / %%s o (3.39)
B - /A 3.40
kr kr Tkr (3. )
- / " (3.41)
8ks - oks nks :

The density function p(h/gi),i=1,2, which is our final
goal, is then the convolution of two gamma densities with a
constant shift: one is distributed on the positive side of

the h-axis, and the other on the negative side.
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However, the convolution of these two gamma
densitities is hard to obtain in an explicit mathematical
expression, because in general, o is not an integer. Since
we do not favor a numerical integration technique for cal-
culating the error rate, a "modified " gamma distribution

is proposed as follows:

(h—c)Y e_(h—c)/6 for h > ¢

y+1

)

g” (h) =
{ T(y+1)

(3.42)

\ for h < ¢

Yy = 0 or 1

In other words, Gamma density curves are roughly cate-
gorized into two types: one is exp(-h/B), and the other is
h exp(-h/B), depending on whether o obtained by (3.38) or
(3.39) is larger than or smaller than a threshold value of
0.35. (The threshold value of 0.35 is a compromise value,
chosen in an attempt to match the maximum value and loca-
tion of the maximum value of the gamma density to the modi-

fied gamma approximation. It is further explained in

(64)).

The procedure proposed by Fukunaga and Krile, then, is
as follows:

- - "2 ~2 .
1) Calculate Ny ' Meer Yk ks from equations

(3.31),(3«32);(3.35), and (3.36)
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-
2) Czalculate @y and T form equations

(3.39)‘
3) ¥,,= 0if a %0.35, and Y, =

Similarly forYkS .

4) Calculated, , &, and ¢, _, €. by

equations: (modified forms

(3.38)-(3.41))

- 2
_ (nkr - ckr) 1
Ykr "2 B
O%r
- 2
_ (nks B cks) -1
Yks ;2
ks
5. = o / (n,_ - ¢ )
kr kr Txr Ckr
5. = o2/ (n._ - c,)
ks 0ks nks Cks

(3.38)

and

ifakr; 0.35-

the following

equations

(3.43)

(3.44)

(3.45)

(3.46)

Equations (3.43)-(3.46) are the same as (3.38)-(3.41),

except for the shift of the mean Cur OF Cg -

P
The convolution of pkr(h) and pks(h), q((h),k=1,2, can

be obtained as an explicit expression. The result is

(See (64) for details)



8 Ykr Yks
p () = ks __t . (Ykr+vks)Okr RILI
+
(e 5kg)Ykr 1L ks Spr ¥ Oks
4 for t £ 0
5 Yks Ykl’
kr t ., (Ykr+ Yks)®ks ot/ Ky
\ Yks+1
5, +
( kr Gks) 6kr 6kr+6ks
for t 2 0
(3.47)

Defining the distance d as
d = C - (e, = cks) (3.48)

=
We can find e, by integrating pl(t) form d1 to~, and

*
e, by integrating pz(t) from -« to d2. The term dk brings

2

the shift parameter C back ino the picture, and also
accounts for the displacement of the (h/wk) approximations

by ¢ and c In general,

kr ks*®
Sy

DF(d. ) = p, X (t)dt =

( . Ykr+1 4 . Ykis 4. /6

- ks

( ks > - Kk, 4 (Ykr+ Yks) Skr Jk . a0

Sxe + Oks ks Skr + ks
< s Yks+lp Ykr

8 —de 15
1~ 4F§ k , ;4 (Ykr+ Yks)Oks o et kr a, 20
kr ks Skr Bijer T Difea

(3.49)
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* ~
where D (dk) is the approximation for Prob(h/wk<O).

Thus, the approximated values of recognition errors are:

]
|

-~ *
= BP(wy) (1 - D (4y)) (3.50)

- *
P(w,) (D (d,)) (3.51)

o
I

3.2.3 Proposed, Modified Algorithm

Figure 3.2 shows a flowchart of Fukunaga's and Krile's
algorithm. The algorithm assumes that the training statis-
tics are an accurate representation of the true statistics
of the two distributions. This being the case, the proba-
bility of <correct classification that the algorithm pro-
jects 1is monotonically non-decreasing as a function of
dimensionality. It is this drawback in the algorithm that
we are trying to correct such that the algorithm would take

into account the number of samples used for training.

Looking back at the calculation of the parameters of

the modified gamma distribution, we see that all of them

depend on two parameters, e and Op,s» OT the mean and vari-

ance of h. If these parameters are inaccurate, then all of

the other parameters will be affected.
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Do Simultaneous
Diagonalization to
Get D, A, A

Order Features
Using Bhattacharyya
Distance

‘ Do [ =1, Number of Features )

Calculate Parameters
0f Gamma Distributions

n, o6, a, G’C

Calculate Probability
of Error Using
First I Dimensions

I

Continue )

({
\
‘ Stop ’

Figure 3.2 A Flowchart of Fukunaga and Krile's
Algorithm.
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We propose to look at the way these parameters, parti-

cularly Oi and 0%, are distributed as a function of the

number of training samples. We then want to incorpbrate
a A

that information in our estimation of 91 and Ug, such that

the algorithm has a mbre realistic picture of what the

training samples represent.

~

Estimating the probability density function of 01 and

%y is by no means an easy task. For the amount of informa-
tion that we have, such an estimation is very involved and

impractical. A discussion of the difficulties one faces in

attempting such an estimation is found in Appendix B.

52
We propose instead to look at the variances of 04 and

~

%
99, and then incorporate that information in our estimation

of these parameters.

Let us look at © (Var (h/w;)) and dz (Var (h/wz)).

17 2’
From equation (3.35), (or (3.36)):
i P 2 2 .
oi =2 1 &)y (1 + 2 byy) (3.35)

Substituting for ajj and byy by their values from

(3.19) and (3.20) in (3.35), we get:

_n 2 g T (3.52)
(1 = 1/2)° (F + 2 4 00, -1)%)

After multiplying, this reduces to:
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- P A ~9 ~9
2
o 2 E (1 - 2/Ai + (2 di + 1) /Ai )

In matrix form, this can be written as:

af =2 (tr (1 - A2+ 20T (i7H2 p

Or in terms of the original distributions:

<9 Sl & 2ap Sl 2 2eil 2
gy = 2 (tr (I - zz zl) + 2 m, I, I, I, mz)

(See (6U4)).

Similarly,

A9 P 2 2
U =
5 =2 Ioay;, (1+ 2 Byl
i=1
= = (A, - 12 (1+23 3 /(A.-1)2 )
i=1 i i i
p ~ ~ ~
=2 I (A +2(d, -1)r, + 1)
i=1 * *

-~

In matrix form, 0, can be written as:

‘2 & o~ -~ -~
o, = 2 (tr (A - 1)% + 2 pTa D)

(3.493)

(3.54)

(355)

(3.56)

(31.57)
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Or, in terms of the original distributions:

_ ~=1 = 2 “T 2-1 2 =2-1 -
o5 2 (tr (z1 I, - I)" + 2 m, I, 22 I m, ) (3.58)

(See (614)).

A A

2
In order to calculate the variances of £ and 9,,

make the following assumptions:

1. The original and transformed means, Ml,Mz, and D

are assumed to be constant. Experience has shown

that one can approximate first- order statistics

with a relatively few number of training samples.

- ~

2. 21 and 22 are independent. This is to say that we

will ignore any relationships that might exist

between the two classes.

Having assumed the above, the results are: (See

Appendix C for the complete derivation)

. P
vere2) =43 (L4t 8 ) _afs e 8
g=1 % Ac B3 2 12 A\ 2 13
2 2 2 2
8 32 48 48 64 - Bd N Ehde S eds
b, = ¥ = + — + o5 =
n2 nl 2 nln2 nln2 n1n2 Al Ro nl 2 n
3242
N + 1L (8 , 8 , 128 40 _ 40 _ 48 48 | 512
n n -1




2

P zg e e A A L (Bﬁ_ 7 o

nln2 nlnz nznl n1n2 n1n2 nlnz 1 )

1 2 12 12 172 2 172 12 172
+4d;(;2_+i+5_(2)+ 24, 48, 88 963) (3.59)

il g B, By R, ns n,n; n;n,
. P
Var(o3) = 4 & | A} ni+-8—+12n8+4—2+ig—)+4—§+—1‘—§-+5212
i=1 1 Uy ) ny nj nj n; nin,

p S22 . 136, 36, 396, 2212 . 2;13 . 2:33013. il d%(as_

b i T e T T TS o B S o TS T B R 1
+ni+%+4_g+ n6:: N 2256 N 26 +i%+ 2388 . 32522 . 32843>

2 n2 nl = nlnz nznl nl nznl n1n2 nznl
-<_4+i+%+%+ 32, 48, 48, 64N\, 50 (i

q By nj nj nity n,nj nin, njnj 1 oy
T +2du<i+i+4_g+2i +ig+§8+g6>

f2 T2 1 fz mp Wtz 8 . myn, TRy

2 4 12 8 16
- 442 (— + = + + = +
i\n, n, n,n, ni nin2> (3.60)

Note that Var(;i) and Var(ag) are inversely propor-
tional to the number of training samples used to estimate
the statistics of classes 1 and 2, and directly propor-
tional to the number of dimensions. In other words, as the

number of training samples increases, the variances of our
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~ ~

: 2
estimates of 9 and 0, decrease, as expected. Also, as the
number of dimensions is increased, the variances of the
estimates increase.
Since we do not have the probability density functions

of Gy and 02, we want to think of a reasonable way to

incorporate the effect of the number of training samples

2 o2
into our estimation of 0; and 0, . We claim that a better
2 2
estimation of the true variances o7 and o), consists of our
22 a2
estimation of these variances, 0; and 0, , plus some multi-

plicative factor of the standard deviations of these esti-
mates, namely the square roots of Var(ol) and Var(Gg), that

were calculated above.

This multiplicative factor was chosen empirically.
Experimental results in Chapter 4 show that the variance of
the probability of error generally increases with increas-
ing dimensionality, especially in the presence of a very
limited training data set. Results also show that the
probability of error is inversely proportional to the num-
ber of training samples. Moreover, it is very sensitive to
the number of training samples in the cases where that num-

ber is not much greater than the number of dimensions.

Based on the above observations, the followin